The Solar System at mas and µas accuracy

Paolo Tanga Observatoire de la Côte d'Azur

Summary: implications of a Gaia-like NIR-extended mission

- Taxonomy and composition
- Epoch photometry
- Astrometric accuracy

- Reflectivity —> a proxy of composition
 - Comparison possible with meteorite spectra in the lab

- Reflectivity —> a proxy of composition
 - Comparison possible with meteorite spectra in the lab
- Composition —> internal structure
 - Mineralogy can provide density of material
 - If bulk density measurement available —> macro-porosity
 - Depends on the collisional evolution

- Reflectivity —> a proxy of composition
 - Comparison possible with meteorite spectra in the lab
- Composition —> internal structure
 - Mineralogy can provide density of material
 - If bulk density measurement available —> macro-porosity
 - Depends on the collisional evolution
- Composition —> origin
 - Hydrated asteroids formed far from the Sun, bringing water to Earth
 - "Primitive types", unaltered since formation (?)
 - Family members —> composition of the parent body...
 - Near Earth Asteroids —> source regions / mitigation strategies
 - etc.

Asteroid spectrum from vis to NIR - an example

- Reflectance spectra: fit to laboratory spectra of different minerals
- Note the important bands at 1 and 2 μ m

Sample available for classification (pre-DR3)

- SS completene ata \square
- Spectra in literature, used by Manlike et al. 2023 to build new taxonomy (with new classes!)
- Threshold at 40% coverage of the 0.45-2.45 μ m range
- Note the current coverage by Gaia... and the possible contribution by GaiaNIR

 p_V

Sample available for classification (pre-DR3)

Mahlke et al. 2023

- SS completene ata \square
- Spectra in literature, used by Manlike et al. 2023 to build new taxonomy (with new classes!)
- Threshold at 40% coverage of the 0.45-2.45 μ m range
- Note the current coverage by Gaia... and the possible contribution by GaiaNIR

 p_V

Main spectral classes

ratio between the two bands

Mahlke et al. 2023

Main spectral classes

Mahlke et al. 2023

More distant objects - the Kuiper Belt and the comets

Signatures of water ice

- Broad features compatible with filter photometry \bigcirc (low spectral resolution) but band details are not accessible
- Similar for comets \bigcirc
 - Most chemicals have specific signatures in the IR (> 3 μ m)

• Most asteroids reflectivity increases towards the NIR - situation favourable for their detection

- Most asteroids reflectivity increases towards the NIR situation favourable for their detection
- Many classification attempts only considers 4-5 bands in the visible
 - For instance : LSST colors \bigcirc
 - Despite the poor sampling, this approach already provides a general view and a first useful classification —> wide \bigcirc band filters are a very useful alternative to spectra

- Most asteroids reflectivity increases towards the NIR situation favourable for their detection
- Many classification attempts only considers 4-5 bands in the visible
 - For instance : LSST colors \bigcirc
 - Despite the poor sampling, this approach already provides a general view and a first useful classification —> wide \bigcirc band filters are a very useful alternative to spectra
- LSST data (Vis) will be abundant in coming years (for "faint" asteroids)
 - We can consider (at first order) that Gaia + LSST will cover the Vis part \bigcirc
 - ...provided that calibration and some physical effects (different epochs / rotation effects) can be dealt with \bigcirc

- Most asteroids reflectivity increases towards the NIR situation favourable for their detection
- Many classification attempts only considers 4-5 bands in the visible
 - For instance : LSST colors \bigcirc
 - Despite the poor sampling, this approach already provides a general view and a first useful classification —> wide \bigcirc band filters are a very useful alternative to spectra
- LSST data (Vis) will be abundant in coming years (for "faint" asteroids)
 - We can consider (at first order) that Gaia + LSST will cover the Vis part \bigcirc
 - ...provided that calibration and some physical effects (different epochs / rotation effects) can be dealt with \bigcirc
- composition

No large scale survey exists in the NIR - but essential to have a complete picture of the

Simplest inversion: 1st order, an ellipsoid + rotation period + direction of the spin axis (6 parameters)

- Simplest inversion: 1st order, an ellipsoid + rotation period + direction of the spin axis (6) parameters)
- The success of the inversion depends on:
 - Photometric accuracy \bigcirc
 - A good coverage of the different aspects of the asteroid wrt the observer, changing with: \bigcirc
 - 1 Rotation around its axis (~ hours)
 - 2 Relative Sun Observer Target geometry (~ years)
 - Sparse photometry poorly samples (1)
 - ...but algorithms can still converge if enough data are corrected (articles by Cellino et al., CU4)

Inversion of epoch photometry: the experience on Gaia DR3

- ~8600 rotation and shape parameters from two independent inversions
 - Durech & Hanus A&A 2023 \bigcirc
 - Cellino et al. 2023, in preparation \bigcirc
- Important amount of slow rotators
 - Possible population of tumblers Ο

Important filtering to get rid of spurious periods

A glimpse into photometric performance (DR3)

Modelling limited by the knowledge of scattering properties. Not possible to asses accuracy below ~0.01 mag

- Photometric variations due to shape are considered to be achromatic (little/no evidence of rotational colour variations)
 - ...however, Vis + NIR photometry opens a new perspective of investigation

- Photometric variations due to shape are considered to be achromatic (little/no evidence of rotational colour variations)
 - ...however, Vis + NIR photometry opens a new perspective of investigation
- Vis (Gaia 1) + NIR (Gaia 2): very useful to increase the sample of size/shapes

- Photometric variations due to shape are considered to be achromatic (little/no evidence of rotational colour variations)
 - ...however, Vis + NIR photometry opens a new perspective of investigation
- Vis (Gaia 1) + NIR (Gaia 2): very useful to increase the sample of size/shapes
- Different scanning law periods between the two missions —> mitigation of spurious periods
 - This would be useful for ALL epoch data

Astrometry: gain on orbit accuracy

Strongly non linear and large gain when time span ~ orbit period

DR3 (34 months)

- Impact on:
 - Mass determination \bigcirc
 - Prediction of stellar occultations Ο

 10^{-3} 101 10^{-5} 10σ_a (au) 10^{-} 10^{-8} 10- 10^{-10} 100 a (au)

Increased arc length : 20 X improvement with respect to DR3

David et al., FPR article, A&A 2023, submitted

FPR (66 months)

Orbit accuracy, which perspectives by Gaia NIR?

- Strong gain on orbits whose period is similar (or <) to the time gap between the missions
 - Situation analogue to what is observed between DR3 and FPR:
 - 66 months —> 3 au
 - 20-30 years —> 7.4 10 au
 - Strong gain also for the exterior of the Solar System (inner KBOs)
- Orbits of shorter period: incremental gain
 - Which are the limits?

FPR: formal orbit uncertainties

FPR: formal orbit uncertainties

FPR: comparison to JPL 1000s observations per objects over 10s-100s yr !!

FPR: formal orbit uncertainties

Answer: yes, for faint objects whose accuracy has margins of improvement

FPR: comparison to JPL 1000s observations per objects over 10s-100s yr !!

FPR: formal orbit uncertainties

- Answer: yes, for faint objects whose accuracy has margins of improvement
- ...and, no, for the best sample: if the dynamical model is not improved at the same time
 - Going below 1e-10 requires a careful evaluation of the masses of perturbers, the treatment of J2 for the largest planets, \bigcirc the Earth-Moon model, etc. —> a better dynamical model

FPR: comparison to JPL 1000s observations per objects over 10s-100s yr !!

Added complexity at mas level: physical properties and astrometry

Satellite-induced wobble in DR3 astrometry of (4337) Arecibo

Tanga et al. A&A special issue 2022

Added complexity at mas level: physical properties and astrometry

Satellite-induced wobble in DR3 astrometry of (4337) Arecibo

Photocenter - barycenter difference: modelling surface properties by astrometry

Tanga et al. A&A special issue 2022

4337 Arecibo

Binary discovered by two stellar occultations - independent observers

Two accurate relative positions Size ratio k ~ 0.55

Post-fit residuals - Gaia observations of (4337) Arecibo

A complete solution for (4337) Arecibo

- From photometry:
 - T = 32.972823 h \bigcirc
- Parameter optimisation:
 - Pole coordinates (λ , β), rotation origin, separation \bigcirc
 - Size ratio 0.35 (smaller than obtained by the \bigcirc occultations)
 - Probable flattened shape of the 2 components
- Through Kepler's law: bulk density = 1.0 g/cm³
 - In agreement with Themis family (< 1.3 g/cm³) ! Ο

Application of astrometry: shape effects

Example of 21 Lutetia

P. Tanga - Lund 2023 - Gaia NIR workshop

Residuals corrected for the shape model and the illumination geometry

DR3, astrometric accuracy: post- orbital fit residuals

- Shape probably affecting asteroid astrometry for objects >10-15 km
 - > 10.000 objects \bigcirc
- Even larger sample affected with more precise orbits

Tanga et al. A&A DR3 special issue, 2022

- Spectroscopy
 - Ο
 - No competitor in currently foreseen surveys \bigcirc

- Spectroscopy
 - \bigcirc
 - No competitor in currently foreseen surveys \bigcirc
- Time sampling of Gaia NIR
 - Big advantage if it is not based on the same scan frequencies as Gaia Ο
 - Useful if the scanning law permits longer sequences of consecutive data on Main Belt asteroids, to \bigcirc better sample rotational variations / satellites
 - Requires an optimisation relative to the average motion

- Spectroscopy
 - \bigcirc
 - No competitor in currently foreseen surveys \bigcirc
- Time sampling of Gaia NIR
 - Big advantage if it is not based on the same scan frequencies as Gaia \bigcirc
 - Useful if the scanning law permits longer sequences of consecutive data on Main Belt asteroids, to \bigcirc better sample rotational variations / satellites
 - Requires an optimisation relative to the average motion
- Asteroid alerts : a minor feature, due to limits in magnitude (and competing missions, NEOSurveyor etc)
 - But for NEOs in general: a better treatment of fast movers would be highly desirable \bigcirc

- Spectroscopy
 - \bigcirc
 - No competitor in currently foreseen surveys \bigcirc
- Time sampling of Gaia NIR
 - Big advantage if it is not based on the same scan frequencies as Gaia \bigcirc
 - Useful if the scanning law permits longer sequences of consecutive data on Main Belt asteroids, to \bigcirc better sample rotational variations / satellites
 - Requires an optimisation relative to the average motion
- Asteroid alerts : a minor feature, due to limits in magnitude (and competing missions, NEOSurveyor etc)
 - But for NEOs in general: a better treatment of fast movers would be highly desirable \bigcirc
- Epoch astrometry
 - Further increase in accuracy based on the Gaia + Gaia NIR Ο
 - Physical and dynamical properties to be modelled at the same time for a larger number of objects \bigcirc
 - Would trigger improvement in the dynamical model of the Solar System (more perturber masses....) \bigcirc

Galluccio et al. A&A DR3 special issue (2022)

