

Galactic Archaeology to its limits - with Gaia (NIR)

Else Starkenburg

Looking at the early Milky Way using stars

These stars are rare

The Milky Way from 1,8 billion stars by Gaia

In a typical halo field only one in ~40,000 has [Fe/H] < -4 (Youakim et al., 2017)

This talk

- > How do we discover these stars (now)
- > What have we learned from their follow-up
 - Surprises in all Galactic environments!
 - . A very large role for Gaia
- > What is there still to come...
- > What are the prospects and challenges (I see) for Gaia NIR in the future

Finding the rare, most metal-poor stars

Pre-selection, for instance:

- The **Pristine** survey
- Gaia BPRP spectra

The Pristine survey

Starkenburg, Martin et al., 2017

Relative brightness in Pristine (compared to Gaia data)

Taking the next step

Martin, Starkenburg et al., in prep.

Applying our method to Gaia spectrophotometry from BP/RP

- › Less deep ...
 - but all-sky
- Input catalogues for upcoming highly-multiplexed spectrographs
 WEAVE (low-res + high-res)
 4MOST halo & bulge surveys

Finding the rare, most metal-poor stars

- The **Pristine** survey
- Gaia BPRP spectra

Distribution & kinematics

- Gaia
- Spectroscopy

Qualitatively, we do see this in simulations

Sestito, Buck, Starkenburg, Martin et al., 2021, similar results in Santistevan et al., 2021

The inner Milky Way

university of

> Pristine Inner Galaxy Survey (PIGS):

- Sample of ~1300 stars with [Fe/H] < -
 2.0 in this region
 - ➢ 9 with [Fe/H] < -3.0</p>
 - More than doubling literature

Anke Arentsen

Different dynamics!

- Dynamics change with different metallicity populations
 - Rotation signal gets less and less
 - > Are we seeing a classical bulge component, or the inner halo?

Arentsen, Starkenburg et al., 2020a

Different chemistry?

PIGS found 62 carbon-rich metal-poor stars (only few known previously)

Less in higher metallicity regime though...

Signature of faster evolution?

Arentsen, Starkenburg et al, 2021

Update: Do the stars also stay in the bulge?

With thanks to StarHorse (in particular, Anna Queiroz, Cristina Chiappini) also Giacomo Monari

Streamfinder: using proper motions from Gaia & spectroscopy

The halo: remnants of the past

Some very exciting streams!

The most metal-poor stellar structure known!

NE

Martin, Venn, Aguado, Starkenburg et al., 2022

Moving towards the future...

university of

- > Huge step forward in this field from massively multi-plexed spectrographs
 - . Low-res & high-res (R ~5000 & R ~ 20 0000)
 - . Large Galactic Archaeology programs
 - Large fields of view 1000s of fibres

⁺⁺Using Reduced Proper Motion for streams

• $H_G = m_G + 5log_{10}(\mu) - 10 - A_G$ = $M_G + 5log_{10}\left(\frac{v_{tan}}{4.74057}\right)$

university of

- Colour versus RPM mimics an HR diagram at different tangential velocities
- High tangential velocity (200-800 km/s) population represents halo

A reduced proper motion sample

Viswanathan+23, arXiv:2302.00053 Catalogue available at CDS: cat/J/MNRAS/521/2087 Codes at GitHub: astroakshara/RPM-Catalogue-Gaia-DR3

Background: Adapted from STREAMFINDER data

viswanathan@astro.rug.nl

Why Main Sequence stars?

Numerous

university of groningen

 $>10^2$ times more common than red giants.

Low surface brightness features

Because they are numerous, it allows us to probe into the faint counterpart of the streams and its features

Simple distance derivation

Reliable

Σ

8

10

12

MSTO

Relatively simple absolute magnitude relation as a function of colour, which can be used to calculate a photometric distance

Linear fit Running mean

Faint-end

 \bigcirc

Low surface brightness streams

GD-1 stellar stream

university of

- Kinks and features better visible
- > Pushing to the limits of Gaia

Gaia NIR reaches 1.5 – 2 mags fainter

Low surface brightness streams

Jhelum stellar stream

university of

- Kinks and features better visible
- Pushing to the limits of Gaia

Gaia NIR reaches 1.5 – 2 mags fainter

Viswanathan+23

This talk

- > How do we discover these stars (now)
- > What have we learned from their follow-up
 - Surprises in all Galactic environments!
 - . A very large role for Gaia
- > What is there still to come...
- > What are the prospects and challenges (I see) for Gaia NIR in the future

Gaia NIR – Open questions

> The power of Galactic Archaeology:

university of groningen

combination of astrometry and spectroscopy (and age)

- > How do we follow-up the targets Gaia NIR will uncover?
- > Are metal-poor spectra in H & K interesting / sufficient?

Gaia NIR – Open questions

Montelius et al., in prep.

Martin Montelius

Gaia NIR – Opportunities

> Moving into the dusty regions!

university o

- Better understanding populations in the disk and bulge
 - Improved parallax and proper motion
- > Red faint stars in the halo
 - . To map low surface brightness features
 - And long time-baselines for proper motions
- Complementing the large multi-plexed surveys

Ready for the future ... to better study the past

Finding these rare stars

- The **Pristine** survey
- Gaia BPRP spectra

Distribution & kinematics

- Gaia
- WEAVE & 4MOST

Nucleosynthesis pattern

- Individual follow-up
- WEAVE & 4MOST

